	di 105 LD	OCHILON	
Dat Tin	ne :		CHEMISTRY
Mai	·ks : THE SOLI	D STATE	
	Single Correct	Answer Type	
1.	Schottky defect generally appears in		
	a) NaCl b) KCl	c) CsCl	d) All of these
2.	Which arrangement of electrons leads ferromagneti	sm?	·
	a) ↑ ↑ ↑ ↑	c) ↑↑↑↓↓	d) None of these
3.	The crystal are bounded by plane faces (f) , straight	nt edges (e) and interfacia	al angel (c) . The relationship
	between these is:		
	a) $f + c = e + 2$ b) $f + e = c + 2$	c) $c + e = f + 2$	d) None of these
4.	The melting point of RbBr is 682°C, while that of N	aF is 988°C. The principle	reason that melting point of
	NaF is much higher than that of RbBr is that:		
	a) The two crystals are not isomorphous		
	b) The molar mass of NaF is smaller than that of Rbl		
	c) The internuclear distance $r_c + r_a$ is greater for Rb		
_	d) The bond is RbBr has more covalent character th		
5.	If a crystal lattice of a compound, each corner of a cu		each edge of a cube has
	oxygen and centre of a cube is enjoyed by tungsten		D. M. MAG
_	a) Na ₂ WO ₄ b) NaWO ₃	c) Na ₃ WO ₃	d) Na ₂ WO ₃
6.	In antifluorite structure, the negative ions:		
	a) Occupy tetrahedral voids		
	b) Occupy octahedral voids c) Are arranged in ccp	CATION	
	c) Are arranged in ccp d) Are arranged in hcp		
7.	An insulator oxide is:		
/.	a) CuO b) C ₀ O	c) Fe ₂ O ₃	d) All of these
8.	A solid with high electrical and thermal conductivity		uj mi oi mese
0.	a) Si b) Li	-	d) ice
9.	The radius ratio $\left(\frac{r_+}{r}\right)$ of an ionic solid (A^+B^-) is 0.69	*	
	(1-)		
4.0	a) 6 b) 8	c) 2	d) 10
10.	The axial angles in triclinic crystal system are		1) 0
4.4		c) $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	d) $\alpha = \beta = \gamma \neq 90^{\circ}$
11.	In NaCl crystal each Cl ⁻ ion is surrounded by) 4 NI + '	D 2 M + :
10	a) 4 Na ⁺ ions b) 6 Na ⁺ ions For an ionic crystal of the general formula A^+B^- and	c) 1 Na ⁺ ion	d) 2 Na ⁺ ions
12.	a) Greater than 0.73	a co-orumation number 6,	the radius ration will be:
	b) Between 0.73 and 0.41		
	c) Between 0.41 and 0.22		
	d) Less than 0.22		
13	The ratio of cations to anion in a octahedral close pa	ıcking is ·	
10.	a) 0.414 b) 0.225	c) 0.02	d) None of these
14	Electrons in a paramagnetic compound are	5) 010 <u>2</u>	a, mone of diese
- *1	a) Shared b) Unpaired	c) Donated	d) Paired
15	Crystals which are good conductor of electricity and		,

) Covalent crystals		d) Molecular crystal
16.	An element has bcc structur	e having unit cells 12.08	$\times~10^{23}$. The number of ato	oms in these cells is :
	a) 12.08×10^{23} b	$) 24.16 \times 10^{23}$	c) 48.38×10^{23}	d) 12.08×10^{22}
17.	Among the following types of	of voids, which one is the	largest void?	
	a) Triangular b) Cubic	c) Tetrahedral	d) Octahedral
18.	The crystalline structure of	NaCl is		
	a) Hexagonal close packing		b) Face centred cubic	
	c) Square planar		d) Body centred cubic	
19.	Metals have conductivity of	the order of (ohm ⁻¹ cm ⁻	⁻¹):	
	a) 10 ¹² b) 10 ⁸	c) 10^2	d) 10^{-6}
20.	Of the elements Sr, Zr, Mo, Co	d and Sb, all of which are	in V period, the paramagne	etics are:
	a) Se, Cd and Sb b) Zr, Mo and Cd	c) Sr, Zr and Cd	d) Zr, Mo and Sb
21.	The radius ratio of CsCl is 0.	93. The expected lattice s	structure is	
	a) Tetrahedral b) Square planar	c) Octahedral	d) Body centred cubic
22.	Which one of the following of	defects in the crystals low	vers its density?	
	a) Frenkel defect b) Schottky defect	c) F-centres	d) Interstitial defect
23.	The yellow colour of ZnO an	d conducting nature prod	duced in heating is due to:	
	a) Metal excess defects due	to interstitial cation		
	b) Extra positive ions preser	nt in an interstitial site		
	c) Trapped electrons			
	d) All of the above			
24.	A metal has bcc structure an	d the edge length of its u	nit cell is 3.04 Å. The volun	ne of the unit cell in cm ³
	will be	- 1 th		
	a) $1.6 \times 10^{-21} \text{ cm}^3$ b	The same of the sa	•	
25.	The edge length of a face cer		c substance is 508 pm. If th	e radius of the cation is
	110 pm, the radius of the ar			
			c) 618 pm	d) 144 pm
26.	An ionic compound is expec			-
	*) 0.225 to 0.414	c) 0.155 to 0.225	d) 0.732 to 1
27.	The interparticle forces in so			
) Covalent bonds	c) Co-ordinate bonds	d) Van der Waals' forces
28.	If Z is the number of atoms	=		sequence $-ABC\ ABC\ -$, the
	number of tetrahedral voids	in the unit cell is equal t		7
	a) Z b) 2Z	c) $\frac{Z}{2}$	d) $\frac{Z}{4}$
29.	Quartz is an example of :		۷	4
271	a) Chain silicate h) Infinite sheet silicate	c) Framework silicate	d) Cyclic silicate
30.	For AX ionic crystal to exist	in has structure the reti	of radii (reation) should be	a, dy one sineace
		. III bee su ucture, the rati		Je
	a) Between 0.41 and 0.73		b) Greater then 0.73	
	c) Less than 0.41		d) Equal to 1.0	
31.	Which crystal is expected to			
) Metallic	c) Molecular	d) Ionic
32.	The elements commonly use	=		
	-) Ga and In	c) P and As	d) Si and Ge
33.	Silver (atomic weight = 108			
	surface of area 10 ⁻¹² m ² can			
_) 5	c) 7	d) 9
34.	The first order reflection (n			
	at an angle of 45°. What is th	ne distance between the s	set of plane causing the diff	raction?

	a) 0.1089 nm	b) 0.1089 m	c) 0.905 Å	d) 1.089×10^{-9} m
35.	What is the number of tet	trahedral voids per atom in		
	a) 1	b) 2	c) 6	d) 8
36.	Iodine is a			
	•	b) Atomic solid	c) Molecular solid	d) Covalent solid
37.	= =	coordination number of Co		
	a) 6, 6	b) 6, 8	c) 8, 8	d) 8, 6
38.		- 1	= -	mixed oxide is composed of
				A and the octahedral voids
	-	alent metal B . The formula		-
	a) $AB O_2$	b) A_2BO_2	c) $A_2B_3O_4$	d) AB_2O_2
39.	The example of orthosilic			
	a) MgCaSi ₂ O ₆	b) Mg ₂ SiO ₄	c) $Fe_2O_3SiO_2$	d) $Ba_3Al_2Si_6O_8$
40.		e centred cubic structure. I		_
	a) 5.783Å	b) 6.783Å	c) 7.783Å	d) 8.783Å
41.		lue of a , b and c are respecti	-	
				formula units per unit cell is
	a) 2	b) 3	c) 4	d) 6
42.	Which one of the following	•		
	a) Rock salt	b) Ice	c) Quartz	d) Dry ice
43.	LiF is a/an:			
	-	b) Metallic crystal		•
44.		s a rock salt structure. If th	ie edge length is 400 pm a	nd radius of cation is 75 pm
	the radius of anion is:	12.405	3.070	N 995
	a) 100 pm	b) 125 pm	c) 250 pm	d) 325 pm
45.	The limiting radius ratio			2 0 111 1 0 700
4.6	a) 0 to 0.155	b) 0.255 to 0.414	75 1 1 1 1 1 1 1 1 1	d) 0.414 to 0.732
46.		cubic lattice. Each edge of the	he unit of cell is 2A. The de	nsity of the metal is 2.5 g
	cm^{-3} . The unit cells in 20		2.4.022	12.4 4.025
4.5	a) 1×10^{24}	b) 1×10^{20}	c) 1×10^{22}	d) 1×10^{25}
47.		cture with nearest neighbo	our distance 4.52 A. Its ato	mic weight is 39. Its density
	will be:	12 00 41 -2) offor -2	D 0401 -2
	a) 454 kg m^{-3}	b) 804 kg m ⁻³	, 0	d) 910 kg m ⁻³
48.	· · · · · · · · · · · · · · · · · · ·	red cube structure. The len	igth of the side of its unit c	ell is 351 pm. Atomic radius
	of the lithium will be:	1.) 2.40) 450	ון קר
40	a) 300 pm	b) 240 pm	c) 152 pm	d) 75 pm
49.	Bragg's equation is:	1-)1 2.4 -: 0	-) 21 -10	1) 1 (2.4/) -: 0
۲0	a) $n\lambda = 2\theta \sin \theta$		c) $2n\lambda = d\sin\theta$	
50.	_	d <i>vice – versa</i> . What is the		each Li atom has 8 nearest
	a) Body centred cubic	u vice – versa, what is the	type of unit cen:	
	b) Face centred cubic			
	•	· Li atoms alone or Ag atom	s alono	
	d) None of the above	LI ALUINS AIUNE UI Ag ALUIN	ง ฉเบเเ⊏	
51		lattice atom Accounies the	corner positions and atom	B occupies the face centre
51.		Bis missing from one of the	-	=
	a) A_2B	b) AB_2	c) A_2B_2	d) A_2B_5
52	Which compound has hig		$c_j n_2 b_2$	a) 112D5
J2.	a) LiBr	b) LiCl	c) LiI	d) LiF
	,	- <i>j</i>	-, 	<i>,</i>

53.	In a face centred cubic cell, an atom at the fac	•	
	a) 4 unit cells b) 2 unit cells	c) 1 unit cell	d) 6 unit cells
54.	Extremely pure samples of Ge and Si are n	ion-conductors, but their condu	ictivity increases suddenly on
	introducingin their crystal lattice.		
	a) As b) B	c) Both (a) and (b)	d) None of these
55.	Iodine crystals are :		
	a) Metallic solid b) Ionic solid	c) Molecular solid	d) Covalent solid
56.	Which of the following statements about amo	-	
	a) They melt over a range of temperature	b) They are anisotropic	
	c) There is no orderly arrangement of partic		ncompressible
57.	The number of atoms present in a simple cub		
	a) 4 b) 3	c) 2	d) 1
58.	An AB_2 type structure is found in :		
	a) NaCl b) CaF ₂	c) Al_2O_3	d) N ₂ O
59.	A cubic crystal possesses in allelements of	of symmetry.	
	a) 9 b) 13	c) 1	d) 23
60.	A solid compound contains X , Y and Z atoms	in a cubic lattice with X atom oc	cupying the corners. Yatoms
	in the body centred positions and Z atoms at	the centres of faces of the unit of	ell. What is the empirical
	formula of the compound?		
	a) XY_2Z_3 b) XYZ_3	c) $X_2Y_2Z_3$	d) $X_8 Y Z_6$
61.	The oxide which shows transition from meta	l to insulation, <i>i.e.</i> , semiconduct	ors are :
	a) V_2O_3 b) VO_2	c) Ti ₂ O ₃	d) All of these
62.	Edge length of a cube is 400 pm. Its body diag	gonal would be :	
	a) 600 pm b) 566 pm	c) 693 pm	d) 500 pm
63.	Crystals can be classified into Basic crys	tal habits.	
	a) 7 b) 4	c) 14	d) 3
64.	The unit cell with crystallographic dimension	$a = b \neq c; \ \alpha = \beta = \gamma = 90^{\circ}$	is:
	a) Cubic b) Tetragonal	c) Monoclinic	d) Hexagonal
65.	The number of octahedral void(s) per atom p	present in a cubic close-packed s	structure is :
	a) 2 b) 4	c) 1	d) 3
66.	The hardness of metals increases with increase	ase in number ofinvolved in	metallic bonding.
	a) Atoms b) Molecules	c) Electrons	d) All of these
67.	The substance which possesses zero resistan	nce as 0 K :	
	a) Conductor b) Super conductor	or c) Insulator	d) Semiconductor
68.	Sodium metal crystallises at room temperatu	ire in a body centred cubic lattic	e with a cell edge $a = 4.29$ Å.
	The radius of sodium atom is		
	a) 1.40 b) 2.65	c) 1.85	d) 2.15
69.	The oxide which shows metallic conduction:		
	a) ReO ₃ b) VO	c) CrO_2	d) All of these
70.	The number of hexagonal faces that are pres	ent in a truncated octahedron is	
	a) 2 b) 4	c) 6	d) 8
71.	Which of the following statement is true?	•	•
	a) Some complex metal oxides behave as	b) Zinc oxide can act as	superconductor
	superconductor		•
	c) An impurity of tetravalent germanium in t	crivalent d) A Frenkel defect is fo	ormed when an ion is
	gallium creates electron deficiency	_	ttice site to an interstitial site
72.	Schottky defect defines imperfection in the la	_	
	a) Solid b) Gas	c) Liquid	d) Plasma
73	When electrons are tranned into the crystal i		

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 4

	a) Schottky defect	b) Frenkel defect	c) Stoichiometric defect	d) F-centres
74.	Which of the following ha	s highest value of energy g	ap?	-
	a) Aluminum	b) Silver	c) Germanium	d) Diamond
75.	•	•	•	red cubic and face-centered,
	-	he spheres in these system		
				$1 \sqrt{3}$ 1
	a) $\frac{1}{2}a: \sqrt{3} a: \frac{1}{\sqrt{2}}a$	b) $\frac{1}{2}a:\frac{1}{2}a:\frac{1}{2}a$	c) $\frac{1}{2}a:\sqrt{3}a:\sqrt{2}a$	a) $\frac{1}{2}a: \frac{1}{4}a: \frac{1}{2\sqrt{2}}a$
76.	In a face centred cubic lat	tice the number of nearest	neighbours for a given latt	ice point are :
	a) 6	b) 8	c) 12	d) 14
77.		,	cure and in body centred pa	
	respectively	1	J I	
	a) 30% and 26%	b) 26% and 32%	c) 32% and 48%	d) 48% and 26%
78.	Lithium borohydride cry		oic system with 4 molecule	e per unit cell. The unit cell
			-	nen the density of crystals is
	:	,		, , , , , , , , , , , , , , , , , , ,
	a) 0.6708 g cm^{-3}	b) $1.6708 \mathrm{g}\mathrm{cm}^{-3}$	c) 2.6708 g cm^{-3}	d) None of these
79.		esent in a face centred cubi		,
	(r=atomic radius)			
	•	. 24	, 12	, 16
	a) $\frac{20}{3}\pi r^3$	b) $\frac{\pi}{3}\pi r^3$	c) $\frac{12}{3}\pi r^3$	d) $\frac{16}{3}\pi r^3$
80.	Which has no rotation of	symmetry?		
	a) Hexagonal	b) Orthorhombic	c) Cubic	d) Triclinic
81.	The unit cell with dimens	ions $\alpha = \beta = \gamma = 90^{\circ}$, $a =$	$b \neq c$ is	
	a) Cubic	b) Triclinic	c) Hexagonal	d) Tetragonal
82.	A fcc element (atomic ma	ss = 60) has a cell edge of	400 pm. Its density is :	
	a) $6.23 \mathrm{g cm^{-3}}$	b) 6.43 g cm^{-3}	c) 6.53 g cm^{-3}	d) 6.63 g cm^{-3}
83.	For a crystal system $a =$	$b = c$ and $\alpha = \beta = \gamma \neq 90$ b) Hexagonal	ATION	
	a) Tetragonal	b) Hexagonal	c) Rhombohedral	d) Monoclinic
84.	The number of atoms (n)	contained within a cubic c	ell is :	
	a) 1	b) 2	c) 3	d) 4
85.	All the substances becom	es diamagnetic at :		
	a) 4 K	b) 10 K	c) 20 K	d) 25 K
86.	The co-ordination number	er of Ca ²⁺ ion in fluorite cry	rstal is :	
	a) 2	b) 8	c) 6	d) 4
87.	What is the structure of N	IaCl?		
	a) BCC	b) FCC	c) Interpenetrating fcc	d) None of these
88.	Which of the following sta	atements is not correct?		
	a) Molecular solids are ge			
	b) The number of carbon	atoms in an unit cell of dia	mond is 4	
	c) The number of Bravais	lattices in which a crystal	can be categorized is 14	
	d) The fraction of the total	ll volume occupied by the a	toms in a primitive cell is 0	1.48.
89.	_	nent regarding a crystal co	ntaining Schottky defect?	
	a) Electrical neutrality of			
	b) Entropy of the crystal i			
	•	all crystal remains the sam	ne	
	d) The density of the over			
90.		_	espectively potassium have	
	a) 8, 8	b) 8, 6	c) 6, 8	d) 8, 2
91.	Ferrimagnetic is converte	ed into paramagnetic at :		

	a) 300 K	b) 400 K	c) 600 K	d) 850 K
92.	A match box exhibits :			
	a) Cubic geometry			
	b) Monoclinic geometry			
	c) Orthorhombic geometr	ry		
	d) Tetragonal geometry			
93.	The oxide that possesses	electrical conductivity :		
	a) V ₂ O ₅	b) CrO ₂	c) NiO	d) MnO
94.	The arrangement ABC AB	3Cis referred to as,		
	a) Octahedral close packi	ng		
	b) Hexagonal close packin	ng		
	c) Tetrahedral close pack	ring		
	d) Cubic close packing			
95.	The lattice points of a cry	stal of hydrogen iodide are	occupied by	
	a) HI molecules		b) H atoms and I atoms	
	c) H ⁺ cations and I ⁻ anio	ns	d) H ₂ molecules and I ₂ mo	lecules
96.	A metal crystallises in a b	cc lattice. Its unit cell edge	length is about 300 pm and	d its molar mass about 50 g
	mol^{-1} . What would be th	e density of the metal(in g	cm^{-3})?	_
	a) 3.1	b) 6.2	c) 9.3	d) 12.4
97.	The radius of the Na ⁺ is 9	5 pm and that of Cl ⁻ ion is	181 pm. Predict the co-ord	lination number of Na ⁺ :
	a) 4	b) 6	c) 8	d) Unpredictable
98.	How many unit cells are p	oresent in a cube shaped id	eal crystal of NaCl of mass	1.00g?
	[Atomic masses : $Na = 23$	3, Cl = 35.5	>	
	a) 2.57×10^{21}	b) 5.14×10^{21}	c) 1.28×10^{21}	d) 1.71×10^{21}
99.	For a covalent solid, the u	ınits which occupy lattice p	oints are :	
	a) Atoms	b) Ions	c) Molecules	d) Electrons
100	. The metal surfaces are ex	cellent reflectors because o	of absorption and re-emiss	ion of light by :
	a) Protons in atom	b) Electrons in atom	c) Neutrons in atom	d) None of these
101	. The fraction of total volur	ne occupies by the atoms p	resent in a simple cube is :	
	a) $\frac{\pi}{3\sqrt{2}}$	b) $\frac{\pi}{4\sqrt{2}}$	c) $\frac{\pi}{4}$	d) $\frac{\pi}{6}$
	3 4 2	1 4 2	1	O
102	-	npurity in a crystal lattice o	of germanium, what type of	f semiconductor formation
	will occur?			
	a) <i>p</i> –type	b) <i>n</i> –type	c) Both (a) and (b)	d) None of the two
103	·	a face-centered cubic lattic	ce. The edge of the unit cel	l is 408 pm. The diameter of
	the metal atom is:			
	a) 144 pm	b) 204 pm	c) 288 pm	d) 408 pm
104	. Metallic crystalline solids			
	a) Have low melting poin	t and boiling point		
	b) Are bad conductors			
	c) Are good conductors o	f heat and electricity		
	d) Only conduct heat			
105		cleavage because their ator	ms, ions and molecules are	:
	a) Weakly bonded togeth			
	b) Strongly bonded togeth			
	c) Spherically symmetric	al		
40-	d) Arranged in planes	ul . Malmi		
106		imilar to NaCl. The co-ordin		1). 0
	a) 2	b) 6	c) 4	d) 8

107. If NaCl is dopped with 1	10^{-4} mole % of SrCl ₂ the con	ncentration of cation vacan	cies will be:
	b) 6.02 x 10 ¹⁷ mol ⁻¹		d) $6.02 \times 10^{15} \text{ mol}^{-1}$
108. What type of crystal def	•	•	
Na ⁺ , Cl ⁻ , Na ⁺ , Cl ⁻ ,Na	,Cl		
$Cl^{-1}Cl^{-1}Na^{+1}Na^{+1}$			
Na ⁺ Cl ⁻ ☐ Cl ⁻ , Na ⁺ Cl ⁻			
$Cl^-Na^+Cl^-Na^+\square Na^+$			
a) Frenkel defect		b) Schottky defect	
c) Interstitial defect		d) Frenkel and Schottky	defects
109. An ion leaves its regular	r site occupy a position in th	ne space between the lattice	e sites is called
a) Frenkel defect	b) Schottky defect	c) Impurity defect	d) Vacancy defect
110. Schottky defects occurs	mainly in electrovalent con	npounds where	
a) Positive ions and neg	gative ions are of different si	ize	
b) Positive ions and neg	gative ions are of same size		
c) Positive ions are sma	Ill and negative ions are big		
•	and negative ions are small		
-	=		ge $a = 4.29$ Å. The radius of
sodium atom is :	J		5
a) 1.8574 Å	b) 2.8574 Å	c) 3.8574 Å	d) None of these
112. The cation-anion bond l			,
a) NaBr	b) SrS	c) CdS	d) BaO
113. In a cubic close packing		,	•
a) 6	b) 9	c) 3	d) 12
114. In a cubic structure of d			*
	s of the cube. The molecular		
a) X_2Y	b) X_3Y		d) <i>XY</i> ₃
115. Which of the following s		$C_J R I_2$	u) X13
a) The units of surface t			
-	•	anisa '	
	coefficient of a liquid are 'p		
,	ody centred cubic type of lat	ttice	
d) The coordination nur			11- 4
116. The ability of a given su		-	
a) Amorphism	b) Isomorphism	c) Polymorphism	d) Isomerism
117. With which one of the fo	_		
a) As	b) Se	c) B	d) Ge
118. If the radius of K ⁺ and F	are 133 pm and 136 pm	respectively, the distance b	etween
K ⁺ and F ⁻ in KF is	13.404.5	2.406	N 0
a) 269 pm	b) 134.5 pm	c) 136 pm	d) 3 pm
119. Copper crystallises in fo	-	=	= =
a) 108 pm	b) 127 pm	c) 157 pm	d) 181 pm
120. Which species is param	-	2 - 21	
a) NO	b) Fe ³⁺	c) Fe ²⁺	d) All are correct
121. Density of a crystal rem	•		
a) Ionic defect	b) Schottky defect	c) Frenkel defect	d) Crystal defect
-			ABABABAB Any packing
-	oid in the lattice. The empty		ume in this lattice is :
a) 26%	b) 32%	c) 20%	d) 30%

123. For a solid with the following structure, the co-ordination number of the point *B* is :

b) 4

c) 5

d) 6

124. The phenomenon in which crystals on subjecting to a pressure or mechanical stress produce electricity is called:

a) Pyro-electricity

b) Piezo-electric effect

c) Ferro-electricity

d) Ferri-electricity

125. Which arrangement of electron decides ferrimagnetism?

a) 11111

b) $\uparrow\downarrow\uparrow\downarrow$

c) $\uparrow\uparrow\uparrow\downarrow\downarrow$

d) None of these

126. The 8:8 type of packing is present in

a) MgF₂

b) CsCl

c) KCl

d) NaCl

- 127. Which is not the correct statement for ionic solids in which positive and negative ions are held by strong electrostatic attractive forces?
 - a) The radius r^+/r^- increases as coordination number increases
 - b) As the difference in size of ions increases, coordination number increases
 - c) When coordination number is eight, the r^+/r^- ratio lies between 0.225 to 0.414
 - In ionic solid of the type AX (ZnS, Wurtzite), the coordination number of Zn²⁺ and S²⁻ respectively are 4 and 4
- 128. Which set of characteristics of ZnS crystal is correct?
 - a) Coordination number (4:4): ccp; Zn^{2+} ion in the alternate tetrahedral voids
 - b) Coordination number (6:6); hcp; Zn²⁺ ion in all tetrahedral voids
 - c) Coordination number (6:4); hcp; Zn²⁺ ion in all octahedral voids
 - d) Coordination number (4:4); ccp; Zn²⁺ ion in all tetrahedral voids
- 129. NaCl structure consists of:
 - a) Na and Cl atoms
 - b) Na⁺ and Cl atoms
 - c) Na atoms and Cl⁻ ions
 - d) Na⁺ and Cl⁻ ions
- 130. A solid metal has ccp or fcc structure. The relation of side of cube (a) and radius of atom (r) will be

a) a = 2r

b) $a = 2\sqrt{2}r$

c) $a = \frac{4}{\sqrt{3}}r$

131. A solid X melts slightly above 273 K and is a poor conductor of heat and electricity. To which of the following categories does it belong?

a) Ionic solid

b) Covalent solid

c) Metallic

d) Molecular

132. Lubricating properties of graphite are diminished in presence of :

a) High pressure

b) Low pressure

c) Vacuum

d) None of these

133. Lithium metal crystallises in a body centred cubic crystal. If the length of the side of the unit cell of lithium is 351 pm, the atomic radius of the lithium will be:

a) 300.5 pm

b) 240.8 pm

c) 151.8 pm

d) 75.5 pm

134. Close packing is maximum in the crystal lattice of :

a) Simple cubic

b) Face centred

c) Body centred

d) None of these

135. The radii of Na⁺and Cl⁻ ions are 95 pm and 181 pm respectively. The edge length of NaCl unit cell is

a) 276 pm

b) 138 pm

c) 552 pm

d) 415 pm

136.		and I^- are 1.46 Å and 2.16 Å.		
405	a) CsCl type	b) ZnS type	c) NaCl type	d) CaF ₂ type
137.	Which one is diamagnet) II-	12 81:2+
400	a) ClO ₃	b) Cu ²⁺	c) F ⁻	d) Ni ²⁺
138.	The statement that "All as:	crystals of the same substa	nce possess the same elem	ents of symmetry" is known
	a) Hauy's law of rationa	lity of indices		
	b) The law of constancy	of interfacial angles		
	c) The law of constancy	of symmetry		
	d) None of the above			
139.	A solid AB has NaCl typradius of B^- ?	pe structure with edge leng	th 580.4 pm. The radius of	f A^+ is 100 pm. What is the
	a) 190.2	b) 540.13	c) 525	d) 78.12
140.	•	α arrangement off A and B ato	ms whose A atoms are at th	ne corner of the unit cell and
		_		it cell. The simplest formula
	a) A_7B_3	b) <i>AB</i> ₃	c) $A_7 B_{24}$	d) $A_{7/8}B_3$
141.	Which one of the follow) / 24	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	a) Rock salt	b) Ice	c) Quartz	d) Dry ice
142.		er of Al in the crystalline sta	* -	
	a) 2	b) 4	c) 6	d) 8
143.	•	ock salt (NaCl), the arrangen	,	·
	a) Fcc	b) Bcc	c) Both (a) and (b)	d) None of these
144.	•	g crystals alternate tetrahed		,
	a) NaCl	b) Zns	c) CaF ₂	d) Na ₂ 0
145.		B crystallises in a cubic latti		, <u>-</u>
	_	e'B' atoms occupy the centr	_	-
	a) AB_2	b) <i>A</i> ₃ <i>B</i>	c) AB	d) <i>AB</i> ₃
146.	Amorphous solids:			
	a) Possess sharp meltin	g points		
	b) Undergo clean cleava	ge when cut with knife		
	c) Do not undergo clean	ı cleavage when cut with kni	ife	
	d) Possess orderly arran	ngement over long distances	5	
147.	For which crystal anion	-anion contact is valid?		
	a) NaF	b) NaI	c) CsBr	d) KCl
148.	The crystal system of a $\alpha = \beta = 90^{\circ}$ and $\gamma = 1$.		imensions $a = 0.387, b = 0$	0.387, and $c = 0.504$ nm and
	a) Cubic	b) Hexagonal	c) Orthorhombic	d) Rhombohedral
149.	Possible number of diffe	erent type of crystal lattice p	resent in all types of crysta	ls, is
	a) 23	b) 7	c) 230	d) 14
150.	Doping of silicon (Si) wi	th boron (B) leads to		
	a) n —type semiconduct	cor	b) p —type semiconducto	r
	c) Metal		d) Insulator	
151.	AB crystallises in a bcc	lattice with edge length $^{\prime}a^{\prime}$	equal to 387 pm. The dista	nce between two oppositely
	charged ions in the latti	ce is :		
	a) 335 pm	b) 250 pm	c) 200 pm	d) 300 pm
152	The packing officiency	f the two dimensional square	re unit cell chown below is	

	a) 39.27%	b) 68.02%	c) 74.05%	d) 78.54%
153	Which is an example of fe	rroelectric compound?		
	a) Quartz	b) PbCrO ₄	c) Barium titanate	d) None of these
154	An increase in the charge	e of the positive ions that	occupy lattice positions b	rings in a /anin metallic
	bonding.			
	a) increase			
	b) Decrease			
	c) Neither increase nor de	ecrease		
	d) Either increase or decr	ease		
155	In a crystal, the atoms are	located at the position of	potential energy.	
	a) Zero	b) Infinite	c) Minimum	d) Maximum
156	Solids are characterised b	y their properties :		
	a) Incompressibility	b) Mechanical strength	c) Crystalling nature	d) All of these
157	Arrangement of sulphide	ions in zinc blende is		
	a) Simple cubic	b) hcp	c) bcc	d) fcc
158	ZnS is:			
	a) Ionic crystal	b) Covalent crystal	c) Metallic crystal	d) Van der Walls' crystal
159	Which substance shows a	ntiferromagnetism?		
	a) ZrO ₂	b) CdO	c) CrO ₂	d) Mn_2O_3
160	The appearance of colour	in solid alkali metal halide	is generally due to:	
	a) Frenkel defect	b) Interstitial position	c) F-centres	d) Schottky defect
161	In a cubic close packing of	f spheres in three dimensio		per of each sphere is :
	a) 6	b) 9	c) 3	d) 12
162	-	of metals is due to transfe		
	a) Molecule collisions	b) Electronic collisions	c) Atomic collisions	d) All of these
163	-	ometrical shape with flat fa		
	a) Amorphous solid	b) Crystalline solid	c) Isotropic solid	d) None of these
164	-	d Cl [–] are interchanges in Na		-
	a) Both fcc	b) Both bcc	c) Fcc and bcc	d) Bcc and fcc
165	Which kind of defect is sh	own by the given crystal?		
	K+ Cl-K+ Cl-K+ Cl-			
	Cl⁻ □ Cl⁻K⁺□K⁺			
	K+Cl- □ Cl-K+Cl-			
	$Cl^-K^+Cl^-K^+ \square K^+$			
	a) Schottky defect		b) Frenkel defect	
	c) Schottky and Frenkel d		d) Substitution disorder	
166		and gold is found to have co		
		nd gold is present at body	· · · · · · · · · · · · · · · · · · ·	
4	a) Cu Ag Au	b) Cu ₄ Ag ₂ Au	c) Cu ₄ Ag ₃ Au	d) Cu ₄ Ag ₄ Au
167	The structure of CsCl crys			
	a) Body centred cubic latt	ace		

168. The pure crystalline substance on being heated gradually first forms a turbid liquid at constant

b) Face centred cubic lattice

c) Octahedral lattice d) None of the abve

d) Isomorphous crystals

PHONE NO: 8583042324 Page | 11

169. Molecular crystals	exist in :	•	
a) Crystalline state	b) Amorphous state	c) Non-crystalline state	d) All of these
170. The unit cell with t	he structure below refers to	crystal system.	
a b 90° 90° 90°			
a) Cubic	b) Orthorhombic	c) Tetragonal	d) Trigonal
171. CsBr crystallises in	n a body centred cubic lattice. '	The unit cell length is 436.	6 pm. Given that the atomic
mass of $Cs = 133$ a	and that of $Br = 80$ amu and Avo	ogadro number being 6.02	$\times 10^{23}$ mol ⁻¹ , the density of
CsBr is :			
a) 8.25 g/cm ³	b) 4.25 g/cm ³	c) 42.5 g/cm ³	d) 0.425 g/cm ³
172. 8 : 8 co-ordination	of CsCl is found to change into 6	: 6 co-ordination on :	
a) Applying pressu	re	2	
b) Increasing temp	erature		
c) Both (a) and (b)			
d) None of these			
173. Which element is u	sed for making a transistor?	CATTON	
a) Sn	b) Sb	c) Si	d) Mg
	he same type of lattice as dose N		= 0.55 and $r_{\rm K^+}/r_{\rm Cl}$ = 0.74.
	of the side of the unit cell for KC		
a) 1.123	b) 0.0891	c) 1.414	d) 0.414
	ms (n) contained within a fcc ce		
a) 1	b) 2	c) 3	d) 4
-	ngle of diffraction (2. θ) is 90°an of X-rays used for Bragg's diffra		a dvalue of 2.28 Å. The
a) 1.612	b) 2.00	c) 2.28	d) 4.00
177. Wax is an example	*	C) 2.20	u) 4.00
a) Ionic crystal	b) Covalent crystal	c) Molecular crystal	d) Metallic crystal
	$^{+}B^{-}$) has a zinc blende structu	-	-
· · · · · · · · · · · · · · · · · · ·	rahedral holes. The formula of s		ting the lattice and A Tons
a) AB	b) A_2B	c) AB_2	d) <i>AB</i> ₄
•	on is 126 pm while that of I^- ion		
	b) 4	c) 6	d) 8
a) 2	t, "It is possible to choose alo	•	
	came length, such that the ratio	_	
	here m, n, p are either integral		
number" is known	_	more numbers meruding	initially of fraction of whole
a) Hauy's law of ra			
•	ancy of interfacial angles		
by The law of collac	and, or interructur ungles		

WEB: WWW.GPLUSEDUCATION.ORG

temperature and still at higher temperature turbidity completely disappears. The behavior is a

c) Isomeric crystals

characteristic of substance forming:

b) Liquid crystals

a) Allotropic crystal

	c) The law of constancy of	of symmetry		
40.	d) None of the above	the Decree of the Control of the Con	127.66	18
181		init cell of Na(bcc type crys	= : : : : : : : : : : : : : : : : : : :	
101	a) 4,4	b) 4,2	c) 2,4	d) 1,1
182	2. Schottky defect is noticed		a) CaCl	d) All of these
101	a) NaCl	b) KCl	c) CsCl	d) All of these
103	3. Which one is called pseud	b) Glass	c) NaCl	d) All of these
10/	a) CaF ₂ 4. A solid having no definite	=	C) NaCi	u) All of these
104	a) Amorphous solid	b) Crystalline solid	c) Anisotropic	d) None of these
10		ch polar crystals on heating	-	
10.	a) Pyro-electricity	b) Piezo-electricity	c) Ferro-electricity	d) Ferri-electricity
186	5. CaF ₂ possesses :	b) I lezo-electricity	c) refro-electricity	u) refri-electricity
100	a) Face centred cubic			
	b) Body centred cubic			
	c) Simple cubic			
	d) Hexagonal closed pack	ring		
187	-	-	which of the following st	atements are correct about
10,	them?	or are sona, nqara ana gas,	winen of the following se	atements are correct about
		viscosity as a common pro	perty	
		e three states possess rand		
	•	rted into solids without pas		ase
		e vapour pressure as a comi		
188	B. Which is ferromagnetic?	T. 1	1 1 2	
	a) Ni	b) Co	c) CrO ₃	d) All of these
189	Θ . Solid ${\sf CO}_2$ is an example o			,
	a) Molecular crystal		c) Metallic crystal	d) Ionic crystal
190). A solid is made of two ele	ements X and Z . The atoms Z	Zare in ccp arrangement w	hile the atom X occupy all
	the tetrahedral sites. Wha	at is the formula of the com	pound?	
	a) <i>XZ</i>	b) <i>XZ</i> ₂	c) X_2Z	d) X_2Z_3
191	l. A cubic crystal possesses	:		
	a) 9 plane of symmetry	b) 13 axis of symmetry	c) 1 centre of symmetry	d) All of these
192	2. A substance $A_X B_Y$ crystal	llises in a face centred cubic	c (fcc) lattice in which aton	ns $^{\prime}A^{\prime}$ occupy each corner of
	the cube and atoms $'B'$ of	ccupy the centres of each fa	ice of the cube. Identify the	e correct composition of the
	substance $A_X B_Y$:			
	a) <i>AB</i> ₃			
	b) A_4B_3			
	c) A_3B			
	d) Composition cannot be	=		
193	3. Which crystal has the larg			
	a) KCl	b) MgO	c) LiBr	d) NaF
194	= = = = = = = = = = = = = = = = = = = =	r more planes and one or m	ore axes of symmetry but i	t possesses
	a) Two centres of symme	=		
	b) One centre of symmetr			
	c) No centre of symmetry	<i>I</i>		
	d) None of the above			
195	5. In an antifluorite structur		> m - 1 - 1 - 1 - 1	n a a a
40	a) Octahedral voids	b) Centre of cube	c) Tetrahedral voids	d) Corners of cube
796	n In a crystal some ions are	missing from normal sites	This is an example of ·	

-	terstitial defect	c) Frenkel defect	d) Schottky defect
197. The number of atoms (n) contains	ned within a body ce		
a) 1 b) 2		c) 3	d) 4
198. The density of KCl is 1.9893 g cr			² Å as determined by X-rays
diffraction. The value of Avogad			D C 045 4019
	023×10^{23}	c) 6.03×10^{23}	d) 6.017×10^{19}
199. Which species is diamagnetic?		2 01 24	DAIL C.I
a) Ca ²⁺ b) Hg		c) Sb ³⁺	d) All of these
200. Graphite is a soft solid lubricar that graphite:	it extremely difficult	to melt. The reason for the	nis anomalous behaviour is
a) Is a non-crystalline substance	2		
b) Is an allotropic form of diamo			
c) Has molecules of variable mo		olymers	
d) Has carbon atoms arranged in	-	•	atoms with weak
interpolate bonds	ir large places of filig.	s of strongly bound carbon	atoms with weak
201. Ionic solids with Schottky defect	ts contain in their str	nicture ·	
a) Equal number of cations and		actare.	
b) Interstitial anions and anion			
c) Cation vacancies only	vacancies		
d) Cation vacancies and interstit	tial cations		
202. Na ₂ SeO ₄ and Na ₂ SO ₄ show:	dar cations		
	lymorphism	c) Allotropism	d) Ferromagnetism
203. The number of molecules of NaC		•	a) i ci i cinagnetism
a) 2 b) 4	3	c) 6	d) 8
	No. of the last of		
204. A compound MnXa has cubic of	close packing (ccp)	arrangement of X . Its unit	cell structure is shown in
204. A compound <i>MpXq</i> has cubic of figure. The empirical formula of		arrangement of X . Its unit	cell structure is shown in
204. A compound $MpXq$ has cubic of figure. The empirical formula of	the compound is:		cell structure is shown in
	the compound is:		cell structure is shown in
figure. The empirical formula of	the compound is:	arrangement of X . Its unit	cell structure is shown in
figure. The empirical formula of	the compound is:		cell structure is shown in
figure. The empirical formula of	the compound is:		cell structure is shown in
figure. The empirical formula of	the compound is:		cell structure is shown in
figure. The empirical formula of	the compound is:		cell structure is shown in
figure. The empirical formula of	the compound is:		cell structure is shown in d) $M_5 X_{14}$
figure. The empirical formula of	the compound is: X_{2} X_{2}	ATION	
figure. The empirical formula of a) MX b) MX	The compound is: X_{2} tes?	c) <i>M</i> ₂ <i>X</i>	
a) MX b) MZ 205. Which one is correct about ferri	the compound is: X_{2} tes? 4 (where A is divalent	c) <i>M</i> ₂ <i>X</i>	
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferrial These possess formula <i>AB</i> ₂ O ₂	the compound is: X_{2} tes? 4 (where A is divalent	c) <i>M</i> ₂ <i>X</i>	
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferria) These possess formula AB_2O_2 b) These possess spinel structure	the compound is: X_{2} tes? 4 (where A is divalent	c) <i>M</i> ₂ <i>X</i>	
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferri a) These possess formula <i>AB</i> ₂ O ₂ b) These possess spinel structure c) MgAl ₂ O ₄ is a ferrite	the compound is: X_{2} tes? ₄ (where <i>A</i> is divalence	c) M_2X t and B is trivalent cation)	d) $M_5 X_{14}$
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferria a) These possess formula <i>AB</i> ₂ O ₂ b) These possess spinel structure c) MgAl ₂ O ₄ is a ferrite d) All of the above	the compound is: X_{2} tes? ₄ (where <i>A</i> is divalence	c) M_2X t and B is trivalent cation)	d) $M_5 X_{14}$
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferri a) These possess formula <i>AB</i> ₂ O ₂ b) These possess spinel structur c) MgAl ₂ O ₄ is a ferrite d) All of the above 206. If the distance between Na ⁺ and	The compound is: X_2 tes? 4 (where A is divalence	c) M_2X t and B is trivalent cation)	d) $M_5 X_{14}$
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferri a) These possess formula <i>AB</i> ₂ O ₂ b) These possess spinel structur c) MgAl ₂ O ₄ is a ferrite d) All of the above 206. If the distance between Na ⁺ and unit cell is	the compound is: X_2 tes? 4 (where A is divalence	c) M_2X t and B is trivalent cation) chloride crystal is X pm, the	d) $M_5 X_{14}$ length of the edge of the
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferri a) These possess formula <i>AB</i> ₂ O ₄ b) These possess spinel structur c) MgAl ₂ O ₄ is a ferrite d) All of the above 206. If the distance between Na ⁺ and unit cell is a) 4 <i>X</i> pm b) <i>X/</i>	The compound is: X_2 tes? 4 (where A is divalence. I Cl^- ions in sodium of A pm a closed pack tetrahe.	c) M_2X t and B is trivalent cation) chloride crystal is X pm, the	d) $M_5 X_{14}$ length of the edge of the
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferri a) These possess formula AB_2O_2 b) These possess spinel structur c) MgAl ₂ O ₄ is a ferrite d) All of the above 206. If the distance between Na ⁺ and unit cell is a) 4 <i>X</i> pm b) <i>X/</i> 207. The ratio of cations to anion in a	the compound is: X_2 tes? 4 (where A is divalence Cl^- ions in sodium of the closed pack tetrahe closed pack tetrahe closed.	c) M_2X It and B is trivalent cation) Chloride crystal is X pm, the c) $X/2$ pm dral is: c) 0.02	d) M_5X_{14} length of the edge of the d) 2 X pm d) None of these
a) <i>MX</i> b) <i>MX</i> 205. Which one is correct about ferri a) These possess formula <i>AB</i> ₂ O ₂ b) These possess spinel structur c) MgAl ₂ O ₄ is a ferrite d) All of the above 206. If the distance between Na ⁺ and unit cell is a) 4 <i>X</i> pm b) <i>X/</i> 207. The ratio of cations to anion in a a) 0.414 b) 0.2	the compound is: X ₂ tes? 4 (where <i>A</i> is divalence Cl Cl ⁻ ions in sodium of the closed pack tetrahe	c) M_2X t and B is trivalent cation) chloride crystal is X pm, the c) $X/2$ pm dral is: c) 0.02 tal is 2.165×10^3 kg m ⁻³	d) M_5X_{14} length of the edge of the d) 2 X pm d) None of these while is X-ray density is
figure. The empirical formula of a) MX b) MX 205. Which one is correct about ferrifically a) These possess formula AB_2O_4 b) These possess spinel structures c) $MgAl_2O_4$ is a ferrite d) All of the above 206. If the distance between Na ⁺ and unit cell is a) $4Xpm$ b) $X/2$ 207. The ratio of cations to anion in a a) 0.414 b) 0.22 208. The pyknometric density of so 2.178×10^3 kg m ⁻³ . The fraction	the compound is: X ₂ tes? 4 (where <i>A</i> is divalence Cl Cl ⁻ ions in sodium of the closed pack tetrahe	c) M_2X t and B is trivalent cation) chloride crystal is X pm, the c) $X/2$ pm dral is: c) 0.02 tal is 2.165×10^3 kg m ⁻³	d) M_5X_{14} length of the edge of the d) 2 X pm d) None of these while is X-ray density is
figure. The empirical formula of a) MX b) MX 205. Which one is correct about ferria) These possess formula AB_2O_2 b) These possess spinel structure; MgAl $_2O_4$ is a ferrite d) All of the above 206. If the distance between Na ⁺ and unit cell is a) $4X$ pm b) $X/2$ 207. The ratio of cations to anion in a a) 0.414 b) 0.22 208. The pyknometric density of so 2.178×10^3 kg m $^{-3}$. The fraction	the compound is: X_2 tes? 4 (where <i>A</i> is divalence) Cl ⁻ ions in sodium of the unoccupied 225 on of the unoccupied 26×10^{-2}	c) M_2X t and B is trivalent cation) chloride crystal is X pm, the c) $X/2$ pm dral is: c) 0.02 tal is 2.165×10^3 kg m ⁻³ sites in sodium chloride cr c) 5.96×10^{-1}	d) M_5X_{14} length of the edge of the d) 2 X pm d) None of these while is X -ray density is ystal is: d) 5.96×10^{-3}

	the empirical formula of the	nis compound?					
	a) AuCu ₃	b) Au ₃ Cu	c) Au ₂ Cu ₃	d) AuCu			
210.	In a solid lattice, the cation	n has left a lattice site and is	s located at an interstitial p	oosition, the lattice defect is			
	a) Frenkel defect	b) Schottky defect	c) F-centre defect	d) Valency defect			
211.	The unit cell cube length for LiCl (just like NaCl structure) is 5.14 Å, Assuming anion-anion contact, the						
	ionic radius for chloride ion is:						
	a) 1.815 Å	b) 2.8 Å	c) 3.8 Å	d) 4.815 Å			
212.	Which arrangement of ele	ctrons leads to anti-ferrom	agnetism?	•			
	a) ↑↑↑↑	b) ↑↓↑↓	c) Both (a) and (b)	d) None of these			
213.	Which of the following wil	ll show anisotropy?		,			
	· ·	b) BaCl ₂	c) Wood	d) Paper			
214.	Silicon dioxide is an examp	· -		7			
		b) Ionic crystal	c) Covalent crystal	d) None of these			
215.		tained in a fcc unit cell of a		,			
	a) 1	b) 2	c) 4	d) 6			
216.	Ionic solids are characteris	*	-, -	, -			
	a) Good conductivity in so						
	b) High vapour pressure						
	c) Low melting point						
	d) Solubility in polar solve	ents					
217	The mass of a unit cell of C						
		_	c) 1Cs ⁺ and 1Cl ⁻	d) 4Cs ⁺ and Cl ⁻			
218	Coordination number of Z		c) rus una rui	aj 105 una ci			
2101	a) 6	b) 4	c) 8	d) 12			
219		The same of the sa	•	a = 4.24 Å. the theoretical			
2171	density of sodium (At. wt.		centered cubic lattice with	u – 4.24 M. the theoretical			
		b) 2.002 g cm^{-3}	c) 3.002 g cm^{-3}	d) None of these			
220		attice with a unit cell edge		•			
220.	a) 181 pm	b) 108 pm	c) 128 pm	d) 157 pm			
221	-	ns are there in a cube base		_			
221.	atoms on each body diago		a unit cen naving one atom	on each corner and two			
	a) 8		c) 4	d) 9			
222	•	ographic (AgBr) paper, silve	•	•			
<i>LLL</i> .	a) Form –ve images	grapine (right) paper, sirve	er atoms move in un ough t	inese defects to .			
	b) Form tiny clumps of silv	var atoms					
	c) Form a colour image	ver atoms					
	d) None of the above						
223	Graphite is a						
443.	a) Molecular solid	b) Covalent solid	c) Ionic solid	d) Metallic solid			
224	Which is covalent solid?	b) Govalent Sond	c) forme some	u) Metanic sonu			
224.		b) Diamond	c) Graphite	d) All of these			
225	a) Fe ₂ O ₃		c) Grapinie	u) All of these			
223.	The co-ordination number a) 6	b) 4	a) 0	4) 2			
226	The coordination number	,	c) 8	d) 2			
226.			a) 4	J) 1			
227	a) 6	b) 8	c) 4	d) 1			
<i>LL1</i> .	Number of atoms per unit		a) 0	d) 4			
220	a) 1	b) 2	c) 8	d) 4			
۷ ۷ 8.		number of body centred cul		J) 12			
	a) 8	b) 6	c) 4	d) 12			

229. Which of the following statements are true?									
a) Piezo-electricity is due	a) Piezo-electricity is due to net dipole moment								
b) Ferro-electricity is due	b) Ferro-electricity is due to alignment of dipoles in same direction								
c) Pyro-electricity is due to heating polar crystals									
d) All of the above									
230. A solid has a bcc structur	re. If the distance of closes	st approach between the tw	vo atoms is 1.73Å. The edge						
length of the cell is :									
a) 200 pm	b) $\sqrt{3} / \sqrt{2} PM$	c) 142.2 pm	d) $\sqrt{2}$ pm						
	231. The number of octahedral sites in a cubical close pack array of <i>N</i> sphere is:								
a) N/2	b) 2 <i>N</i>	c) 4 N	d) <i>N</i>						
232. A solid A^+B^- has the B^-	•								
structure. The formula of	-	tine II Tons occupy hun o	t the tetrahearar sites in the						
structure. The formula of	30114 13 .								
a) <i>AB</i>	b) <i>AB</i> ₂	c) A ₂ B	d) A_3B_4						
233. Crystalline solids have :									
a) Short range order									
b) Long range order									
c) Anisotropic distributio	n								
d) No order		>							
234. The statement that, "Th	e crystals of same substa	ance can have different s	hapes depending upon the						
		corresponding faces remai							
a) Hauy's law of rationali									
b) The law of constancy o	· ·								
c) The law of constancy o		CATION							
d) None of the above	TILLO2 FILO1	PMITOIA							
235. Frenkel defect is noticed	in:								
a) AgBr	b) ZnS	c) Agl	d) All of these						
236. A fcc unit cell of aluminiu	_		,						
a) 1		c) 3	d) 4						
237. The maximum proportion		-							
a) 0.52	b) 0.34	c) 0.32	d) 0.68						
238. The resistance of mercury	y becomes almost zero at :	•	,						
a) 4 K	b) 10 K	c) 20 K	d) 25 K						
239. The cubic unit cell of Al (1	,		_						
The cubic unit cell is	8 ,	8 8 1	, 8						
a) Face centred	b) Body centred	c) Primitive	d) Edge centred						
240. Maximum ferromagnetisi	•	-,	,						
a) Fe	b) Ni	c) Co	d) None of these						
241. How many tetrahedral ho	•	-	a) None of these						
a) 25%	b) 50%	c) 75%	d) 100%						
242. The flame colours of meta	•	c) 7370	d) 100%						
a) Frenkel defect	ar ions are due to	b) Schottky defect							
c) Metal deficiency defect	-	d) Metal excess defect							
		aj metar excess defect							
_	243. Which of the following statements is correct?a) Silicon doped with boron is an <i>n</i> –type semiconductor								
a) officer appearment for the cype semiconductor									

	b) shitten doped with a senic is a p —type semiconductor						
	c) Metals are good conductors of electricity						
	d) Electrical conductivity	of semiconductors decreas	es with increasing tempera	iture			
244.	A compound is formed by	elements A and B . This cr	ystallises in the cubic struc	ture where the <i>A</i> atoms are			
	at the corners of the cube and B atoms are at the body centres. The simplest formula of the compa						
	a) <i>AB</i>	b) <i>A</i> ₆ <i>B</i>	c) A_8B_4	d) AB_6			
245.	Which pairs shows isomo			, ,			
	a) KNO ₃ , NaNO ₃	b) Cr ₂ O ₃ , FeO	c) Both (a) and (b)	d) None of these			
246.	The elements of symmetry		, (, (,				
	a) Plane of symmetry	•	c) Centre of symmetry	d) All of these			
247.			, ,	centred cubic arrangement			
	of atoms?	1	1	3			
	a) 8, 4	b) 1, 2	c) 4,8	d) 2, 1			
248.	•			-			
	48. A solid has structure in which 'W' atoms are located at the corners of a cubic lattice 'O' atoms at the of edge and Na atoms at the centre of cube. The formula for the compound is						
	a) Na_2WO_3	b) Na ₂ WO ₂	c) NaWO ₂	d) NaWO ₃			
249.	Which do not form amalga		0) 11411 02	a) 1.a.v. 0 3			
	a) Pt	b) Fe	c) Both (a) and (b)	d) None of these			
250.	A crystal of Fe_3O_4 is:	2) 10	o) 2001 (a) una (2)				
	• • •	b) Diamagnetic	c) Ferromagnetic	d) Ferromagnetic			
251.	, ,	, ,	om. What is the radius of Y	-			
	a) 120 pm	b) 136.6 to 241.6 pm		d) 241.6 pm			
252.	*			•			
	An element (atomic mass = 100 g/mol) having bcc structure has unit cell edge 400 pm . Then density of the element is:						
	a) 10.376 g/cm ³	b) 5.188 g/cm ³	c) 7.289 g/cm ³	d) 2.144 g/cm^3			
253.		d atoms to tetrahedral hole	, ,,				
	a) 1:1	b) 1:2	c) 1:3	d) 2:1			
254.	TiO ₂ is well known examp		MOTTA	,			
20 11	a) Triclinic system	b) Tetragonal system	c) Monoclinic system	d) None of these			
255.	•	n atom on a corner is share	•	a, none or mose			
2001	a) 2 unit cells	b) 1 unit cell	c) 8 unit cells	d) 4 unit cells			
256	•	centred cubic (bcc) lattice	•	aj i ame cens			
	_	b) 10%		d) 46%			
	,	n a body-centred cubic uni	•	2) 10,0			
	a) 32%	b) 34%	c) 28%	d) 30%			
258.		,	and those of element X occu				
	voids. The formula of the	-	and those of clotheness soci	apy 2/3rd or totramedrar			
	a) X_4Y_3	b) X_2Y_3	c) <i>X</i> ₂ <i>Y</i>	d) X_3Y_4			
259		, = 0		noved. Then the number of			
2071	Na ⁺ and Cl ⁻ ions remaining		mown in the figure are ren	noved. Then the number of			
	/: Indicate the constraint	ing in the unit centure					
	;						
	<i></i>						
	a) 4 and 4	b) 3 and 3	c) 1 and 1	d) 4 and 3			